wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that tanθ(1cotθ)+cotθ(1tanθ)=(1+secθcosec θ)

Open in App
Solution

LHS

=tanθ(1cotθ)+cot(1tanθ)

[Using: tanθ=sinθcosθ and cotθ=cosθsinθ ]

=tanθ(1cosθsinθ)+cotθ(1sinθcosθ)

=sinθtanθ(sinθcosθ)+cosθcotθ(cosθsinθ)

=sinθ×sinθcosθ(sinθcosθ)cosθ×cosθsinθ(sinθcosθ)

=sin2θcosθcos2θsinθ(sinθcosθ)

=sin3θcos3θcosθsinθ(sinθcosθ)

[Using identity: (a3b3)=(ab)(a2+ab+b2)
=(sinθcosθ)(sin2θ+sinθcosθ+cos2θ)cosθsinθ(sinθcosθ)
[Using identity:sin2θ+cos2θ=1 ]

=1+sinθcosθsinθcosθ

=1sinθcosθ+sinθcosθsinθcosθ

[Using identity: 1sinθ=cosec θand1cosθ=secθ ]
=secθcosec θ+1
RHS
=1+secθcosec θ
Hence Proved.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon