Show that tanθ(1−cotθ)+cotθ(1−tanθ)=(1+secθcosec θ)
LHS
=tanθ(1−cotθ)+cot(1−tanθ)
[Using: tanθ=sinθcosθ and cotθ=cosθsinθ ]
=tanθ(1−cosθsinθ)+cotθ(1−sinθcosθ)
=sinθtanθ(sinθ−cosθ)+cosθcotθ(cosθ−sinθ)
=sinθ×sinθcosθ(sinθ−cosθ)−cosθ×cosθsinθ(sinθ−cosθ)
=sin2θcosθ−cos2θsinθ(sinθ−cosθ)
=sin3θ−cos3θcosθsinθ(sinθ−cosθ)
[Using identity: (a3−b3)=(a−b)(a2+ab+b2)=1+sinθcosθsinθcosθ
=1sinθcosθ+sinθcosθsinθcosθ
[Using identity: 1sinθ=cosec θand1cosθ=secθ ]