Show that the points A(1, 3, 4), B)-1, 6, 10), C(-7, 4, 7) and D(-5, 1, 1) are the vertices of a rhombus.
Let A(1, 3, 4), B)-1, 6, 10), C(-7, 4, 7) and D(-5, 1, 1) be the vertices of quadrilateral ABCD
AB=√(−1−1)2+(6−3)2+(10−4)2
=√4+9+36=√49
=7 units
BC=√(−7+1)2+(4−6)2+(7−10)2
=√36+4+9=√49
=7 units
CD=√(−5+7)2+(1−4)2+(1−7)2
=√4+9+36=√49
=7 units
DA=√(1+5)2+(3−1)2+(4−1)2
=√36+4+9=√49
=7 units ∴
AB = BC = CD = DA
Hence, ABCD is a rhombus.