Show that the points A(2,1,−1),B(0,−1,0),C(4,0,4) and D(2,0,1) are coplanar.
Given: A(2,1,−1),B(0,−1,0),C(4,0,4) and D(2,0,1)
Therefore,
→OA=2^i+^j−^k
→OB=−^j
→OC=4^i+4^k and
→OD=2^i+^k
Thus,
→AB=→OB−→OA=−2^i−2^j+^k
→AC=→OC−→OA=2^i−^j+5^k
→AD=→OD−→OA=−^j+2^k
Now, if |→AB→AC→AD|=0 then we say that the points are coplanar.
Therefore,
=∣∣ ∣∣−2−212−150−12∣∣ ∣∣
=−2(−2+5)−(−2)(4−0)+(1)(−2−0)
=−6+8−2
=0
Hence, the points are coplanar.