Show that the points A(3, 0), B(4, 5), C(-1, 4) and D(-2, -1) are the vertices of a rhombus. Find its area.
The given points are A (3,0), B(4,5) and C(-1,4), D(-2,-1). Then
AB=√(3−4)2+(0−5)2=√(−1)2+(−5)2=√1+25=√26units
BC=√(4+1)2+(5−4)2=√(5)2+(1)2=√25+1=√26units
CD=√(−1+2)2+(4+1)2=√(1)2+(5)2=√1+25=√26units
AD=√(3+2)2+(0+1)2=√(5)2+(1)2=√25+1=√26units
AC=√(3+1)2+(0−4)2=√(4)2+(−4)2=√16+16=√32=4√2units
BD=√(4+2)2+(5+1)2=√(6)2+(6)2=√36+36=√72=6√2units
Therefore AB = BC = CD = DA = √26 units and diagonal AC is not equal to diagonal BD
Hence, ABCD is a rhombus
Area of a rhombus =12×(Product of its diagonals)
=12×4√2×6√2
= 24
= 24 square units