Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7)
AB=√(0−3)2+(6−3)2+(3−3)2
=√(−3)2+(3)2+(0)2=√9+9
=3√2 units
BC=√(1−0)2+(7−6)2+(7−3)2
=√(1)2+(1)2+(4)2
=√1+1+16=3√2 units
AC=√(1−3)2+(7−3)2+(7−3)2
=√(−2)2+(4)2+(4)2
=√4+16+16=√36 =6 units
BD =√(4−0)2+(4−6)2+(7−3)2
= √(4)2+(−2)2+(4)2
=√16+4+16=√36=6 units
CD = √(4−1)2+(4−7)2+(7−7)2
=√(3)2+(−3)2+(0)2
=√9+9
=3√2 units
AD=√(4−3)2+(4−3)2+(7−3)2
=√(1)+(1)2+(4)2=√1+1+16
=3√2 units
Since,
AB = BC = CD = DA
And AC = BD
Since, all sides and diagnols of quadrilateral ABCD all equal.