Show that y=log(1+x)−2x1+x,x>−1, is an increasing function of x throughout its domain
Given, y=log(1+x)−2x(2+x)
On differentiating, we get dydx=ddx[log(1+x)−2x2+x]=11+x−(2+x)ddx(2x)−2xddx(2+x)(2+x)2=11+x−4+2x−2x(2+x)2=11+x−4(2+x)2=(2x+x)2−4(1+x)(1+x)(2+x)2=4+x2+4x−4−4x[1+x](2+x)2=x2(1+x)(2+x)2
When xϵ(−1,∞), then x22+x2>0 and (1+x)>0
∴y>0 when x>−1
Hence, y is an increasing function throughout (x>−1) its domain.