wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that y=log(1+x)2x1+x,x>1, is an increasing function of x throughout its domain

Open in App
Solution

Given, y=log(1+x)2x(2+x)
On differentiating, we get dydx=ddx[log(1+x)2x2+x]=11+x(2+x)ddx(2x)2xddx(2+x)(2+x)2=11+x4+2x2x(2+x)2=11+x4(2+x)2=(2x+x)24(1+x)(1+x)(2+x)2=4+x2+4x44x[1+x](2+x)2=x2(1+x)(2+x)2
When xϵ(1,), then x22+x2>0 and (1+x)>0
y>0 when x>1
Hence, y is an increasing function throughout (x>1) its domain.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Subset
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon