(2a+b)3−(2a−b)3
Using identity:-
(x+y)3=x3+y3+3x2y+3xy2
(x−y)3=x3−y3−3x2y+3xy2
Therefore,
(2a+b)3−(2a−b)3
=[(2a)3+b3+3(2a)2b+2(2a)b2]−[(2a)3−b3−3(2a)2b+2(2a)b2]
=[8a3+b3+12a2b+3ab2]−[8a3−b3−12a2b+3ab2]
=8a3+b3+12a2b+3ab2−8a3+b3+12a2b−3ab2
=b3+12a2b+b3+12a2b
=2b3+24a2b
Hence (2a+b)3−(2a−b)3=2b3+24a2b.