(3xy−2ab)3−(3xy+2ab)3
Here, A = 3xy - 2ab and B = 3xy + 2ab
∴(3xy−2ab)3−(3xy+2ab)3
=[(3xy−2ab)−(3xy+2ab)][(3xy−2ab)2+(3xy−2ab)(3xy+2ab)+(3xy+2ab)2]
...[∵A3−B3=(A−B)(A2+AB+B2)]
=(3xy−2ab−3xy−2ab)[(9x2y2−12xyab+4a2b2)+(9x2y2−4a2b2)+(9x2y2+12xyab+4a2b2)]
=(−4ab)(9x2y2+9x2y2+9x2y2−12xyab+12xyab+4a2b2−4a2b2+4a2b2)
=(−4ab)(27 xy2+4a2b2)
=−108x2y2ab−16a3b3