Simplify: (a2+5)(b3+3)+5
Step 1: Expand (a2+5)(b3+3)using distributive property
Given: (a2+5)(b3+3)+5
∵xy+z=xy+xz
∴(a2+5)(b3+3)=a2×(b3+3)+5×(b3+3)=(a2×b3)+(a2×3)+(5×b3)+(5×3)=a2b3+3a2+5b3+15
Step2: Find the expanded form of given expression
Now consider
(a2+5)(b3+3)+5
=a2b3+3a2+5b3+15+5
=a2b3+3a2+5b3+20
Hence, (a2+5)(b3+3)+5=a2b3+5b3+2a2+20