wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify : (a2b2)3+(b2c2)3+(c2a2)3÷[(ab)3+(bc)3+(ca)3]


Open in App
Solution

Given: (a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)3

We know that if x+y+z=0 then x3+y3+z3=3xyz

Since,

a2b2+b2c2+c2a2=0, therefore,

(a2b2)3+(b2c2)3+(c2a2)3=3(a2b2)(b2c2)(c2a2)

Also,

ab+bc+ca=0

(ab)3+(bc)3+(ca)3=3(ab)(bc)(ca)

Therefore,

(a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)3

=3(a2b2)(b2c2)(c2a2)3(ab)(bc)(ca)

=(ab)(a+b)(bc)(b+c)(ca)(c+a)(ab)(bc)(ca)

=(a+b)(b+c)(c+a)


flag
Suggest Corrections
thumbs-up
592
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon