Simplify : (a2−b2)3+(b2−c2)3+(c2−a2)3÷[(a−b)3+(b−c)3+(c−a)3]
Given: (a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
We know that if x+y+z=0 then x3+y3+z3=3xyz
Since,
⇒a2−b2+b2−c2+c2−a2=0, therefore,
(a2−b2)3+(b2−c2)3+(c2−a2)3=3(a2−b2)(b2−c2)(c2−a2)
Also,
⇒a−b+b−c+c−a=0
(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
Therefore,
(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
=3(a2−b2)(b2−c2)(c2−a2)3(a−b)(b−c)(c−a)
=(a−b)(a+b)(b−c)(b+c)(c−a)(c+a)(a−b)(b−c)(c−a)
=(a+b)(b+c)(c+a)