Simplify: (ab+bc)2–2ab2c
Given expression is (ab+bc)2–2ab2c:
Using the identities
(a+b)2=a2+b2+2ab
(a-b)2=a2+b2-2ab
In the given expression consider (ab+bc)2:
⇒(ab+bc)2 = (ab)2+(bc)2+2×ab×bc ∵(a+b)2=a2+b2+2ab
⇒(ab+bc)2 = a2b2+b2c2+2ab2c
Now, (ab+bc)2–2ab2c=a2b2+b2c2+2ab2c–2ab2c
Therefore, (ab+bc)2–2ab2c=a2b2+b2c2.
Question 4(vi) Simplify: (ab+bc)2−2ab2c
Simplify.
(i) (a2 − b2)2 (ii) (2x +5)2 − (2x − 5)2
(iii) (7m − 8n)2 + (7m + 8n)2 (iv) (4m + 5n)2 + (5m + 4n)2
(v) (2.5p − 1.5q)2 − (1.5p − 2.5q)2
(vi) (ab + bc)2 − 2ab2c (vii) (m2 − n2m)2 + 2m3n2