The correct option is C sin θ
We know that,
cosec θ=1sin θ, cot θ=cos θsin θ
On substituting these values,
(cosec θ+cot θ)×(1−cos θ)=(1sin θ+cos θsin θ)×(1−cos θ)
On multiply (1+cos θ)(1+cosθ), we get
(1sin θ+cos θsin θ)×(1−cos θ)×(1+cos θ)(1+cos θ)=(1+cos θ)sin θ×(1−cos θ)×(1+cos θ)(1+cos θ)=(1+cos θ)sin θ×(1−cos2θ)(1+cos θ)
By cancelling out the common terms,
=(1−cos2θ)sin θ
∵ 1−cos2θ=sin2θ, on further simplifying,
⇒(1−cos2θ)sin θ=sin2θsin θ=sin θ
∴(cosec θ+cot θ)×(1−cos θ)=sin θ