Simplify sin3θ1+2cos2θ
sinθ
We have sin3θ1+2cos2θ
Substituting the value of sin3θ & cos2θ
=3sinθ−4sin3θ1+2[2cos2θ−1]
=3sinθ−4sin3θ1+4cos2θ−2
=3sinθ−4sin3θ4cos2θ−1
Further, replace 1 with sin2θ+cos2θ
⇒sin3θ1+2cos2θ=3sinθ−4sin3θ4cos2θ−sin2θ−cos2θ =3sinθ−4sin3θ3cos2θ−sin2θ
=3sinθ−4sin3θ3(1−sin2θ)−sin2θ
=sinθ(3−4sin2θ)3−4sin2θ
=sinθ