sin{2tan−1√1−x1+x}
Put x=cos2θ........................(1)
Then,
sin{2tan−1√1−cos2θ1+cos2θ}
=sin⎧⎪⎨⎪⎩2tan−1 ⎷1−(1−2sin2θ)1+(2cos2θ−1)⎫⎪⎬⎪⎭
=sin⎧⎨⎩2tan−1√2sin2θ2cos2θ⎫⎬⎭
=sin{2tan−1√tan2θ}
=sin(2tan−1tanθ)
=sin2θ
By equation (1)
x=cos2θ
2θ=cos−1x
Put this value in sin2θ
=sin(cos−1x)
=sinsin−1√1−x2 Since (cos−1x=sin−1√1−x2)
=√1−x2
Hence, the value is √1−x2.