wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin135cos16365=tan1253204

Open in App
Solution

We have,

L.H.S.

sin135cos16365

Let,

sin135=A

sinA=35......(1)

Using Pythagoras theorem

H2=P2+B2

52=32+B2

B2=259

B2=16

B2=42

B=4

Then,

sinA=35, then,

tanA=34

A=tan134......(2)

From (1) and (2) to,

sin135=tan134

Let

cos16365=θ......(3)

cosθ=6365

Now, using Pythagoras theorem,

H2=L2+B2

652=L2+632

4225=L2+3969

42253969=L2

L2=256

L2=162

L=16

Now,

tanθ=1663

θ=tan11663......(4)

From equation (3) and (4) to,

cos16365=tan11663

L.H.S.

tan134+tan11663

tan1x+tan1y=tan1(x+y1xy)

tan134+tan11663=tan1⎜ ⎜ ⎜34+1663134×1663⎟ ⎟ ⎟

=tan13×63+4×164×634×633×164×63

=tan1189+6425248

=tan1253204

R.H.S.
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon