We have,
L.H.S.
sin−135−cos−16365
Let,
sin−135=A
sinA=35......(1)
Using Pythagoras theorem
H2=P2+B2
52=32+B2
B2=25−9
B2=16
B2=42
B=4
Then,
sinA=35, then,
tanA=34
A=tan−134......(2)
From (1) and (2) to,
sin−135=tan−134
Let
cos−16365=θ......(3)
cosθ=6365
Now, using Pythagoras theorem,
H2=L2+B2
652=L2+632
4225=L2+3969
4225−3969=L2
L2=256
L2=162
L=16
Now,
tanθ=1663
θ=tan−11663......(4)
From equation (3) and (4) to,
cos−16365=tan−11663
L.H.S.
tan−134+tan−11663
tan−1x+tan−1y=tan−1(x+y1−xy)
⇒tan−134+tan−11663=tan−1⎛⎜ ⎜ ⎜⎝34+16631−34×1663⎞⎟ ⎟ ⎟⎠
=tan−13×63+4×164×634×63−3×164×63
=tan−1189+64252−48
=tan−1253204
R.H.S.