Expand the given formula by Sin(A+B)=sinAcosB+cosAsinB
sin(A-B)= sinAcosB-cosAsinB
cos (A-B)=cosAcosB+sinAsinB
cos (A+B)=cosAcosB-sinAsinB
=[(sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] /[(cosAcosB-sinAsinB) + (cosAcosB+sinAsinB)]
=2sinAcosB / 2cosAcosB
=sinA/cosA= tanA
hence proved