Show that: (sinA−sinB)(cosA+cosB)+(cosA−cosB)(sinA+sinB)=0
Consider,
LHS: (sinA−sinB)(cosA+cosB)+(cosA−cosB)(sinA+sinB)
=(sinA−sinB)(sinA+sinB)+(cosA−cosB)(cosA+cosB)(cosA+cosB)(sinA+sinB)
=sin2A+sinAsinB−sinBsinA−sin2B+cos2A+cosAcosB−cosAcosB−cos2B(cosA+cosB)(sinA+sinB)
=(sin2A+cos2A)−(sin2B+sin2A)(cosA+cosB)(sinA+sinB)
=0(cosA+cosB)(sinA+sinB)
=0
= RHS
Hence, proved.