The correct option is A x√1+x2
To find: sin(tan−1x)
Let θ=tan−1x so,x=tanθ
sin(tan−1x)=sinθ
⇒sin(tan−1x)=1 cosec θ=1√1+cot2θ
⇒sin(tan−1x)=1√1+cot2θ
⇒sin(tan−1x)=1√1+1tan2θ
Now putting the values of θ, we get
⇒sin(tan−1x)=1√1+1(tan(tan−1x))2
⇒sin(tan−1x)=1√1+1x2=x√x2+1
∴Option (D) is correct.