The correct option is C cosAcosBcosC[tanA+tanB+tanC−tanAtanBtanC]
Given : sin(A+B+C)
sin(A+B+C)=sin(A+(B+C))
We know, sin(A+B)=sinAcosB+cosAsinB
⇒sin(A+B+C)=sinAcos(B+C)+cosAsin(B+C)
As, cos(A+B)=cosAcosB−sinAsinB
⇒sin(A+B+C)=sinA[cosBcosC−sinBsinC]+cosA[sinBcosC+cosBsinC]
⇒sin(A+B+C)=sinAcosBcosC−sinAsinBsinC+cosAsinBcosC+cosAcosBsinC
Multiply and divide by cosAcosBcosC on R.H.S.
⇒sin(A+B+C)=cosAcosBcosC[sinAcosBcosC−sinAsinBsinC+cosAsinBcosC+cosAcosBsinCcosAcosBcosC]
⇒sin(A+B+C)=cosAcosBcosC[tanA−tanAtanBtanC+tanB+tanC]
⇒sin(A+B+C)=cosAcosBcosC[tanA+tanB+tanC−tanAtanBtanC]