Prove: sin3a=3sina−4sin3a, when a=30∘
Given:sin3a=3sina−4sin3a, when a=30°
Now,
LHS:
⇒sin3a=sin3×30∘=sin90∘=1 [Value of sin90∘=1]
RHS:
3sina−4sin3a=3sin30∘−4sin330∘ [ Value of sin30∘=12]
⇒3×(12)−4×(12)3
=32−48
=32−12
=(3−1)2
=22
=1
Hence, LHS = RHS