Evaluate sin9∘×cos9∘sin48∘×cos12∘
Given sin9∘×cos9∘sin48∘×cos12∘
Dividing and multiplying by 2, we get
=2sin9∘×cos9∘2sin48∘×cos12∘
Use, formula, 2sinA.cosA=sin2A
and 2sinA.cosB=sin(A+B)+sin(A−B)
=sin18∘sin(48∘+12∘)+ sin(48∘−12∘)
=sin18∘sin60∘+sin36∘
we know,
sin18∘=√5−14
sin36∘=√10−2√54
Therefore, the value of given expression is √5−14√32+√10−2√54
=√5−142√3+√10−2√54
=√5−12√3+√10−2√5