The given equation is y=| x+3 | and integral to be evaluated is ∫ −6 0 | x+3 | dx.
To sketch the graph of the equation y=| x+3 |, put some values of x and find corresponding values of y. Make a table of values of y and x.
x | y |
−6 | 3 |
−5 | 2 |
−4 | 1 |
−3 | 0 |
−2 | 1 |
−1 | 2 |
0 | 3 |
Plot the points from the above table and join them by straight lines.
Figure (1)
Figure (1) shows the graph of the equation y=| x+3 |.
We have to evaluate the integral ∫ −6 0 | x+3 | dx. The absolute value function can be written as,
y=−( x+3 ) −6≤x≤−3 y=( x+3 ) −3≤x≤0
Thus, the integral can be written as,
∫ −6 0 | x+3 | dx=− ∫ −6 −3 ( x+3 ) dx+ ∫ −3 0 ( x+3 )dx
Integrate the above integral and apply the boundary conditions.
∫ −6 0 | x+3 | dx=− ∫ −6 −3 ( x+3 ) dx+ ∫ −3 0 ( x+3 ) dx =− [ x 2 2 +3x ] −6 −3 + [ x 2 2 +3x ] −3 0 =−[ ( −3 ) 2 2 +3( −3 )−( ( −6 ) 2 2 +3( −6 ) ) ]+[ ( 0 ) 2 2 +3( 0 )−( ( −3 ) 2 2 +3( −3 ) ) ] =−[ 9 2 −9−18+18 ]+[ − 9 2 +9 ]
Further, solve the above equation.
∫ −6 0 | x+3 | dx=−[ 9 2 −9−18+18 ]+[ − 9 2 +9 ] =−[ − 9 2 ]+[ 9 2 ] =9
Thus, the value of integral ∫ −6 0 | x+3 | dx is 9 sq units.