wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
(1+ex/y)dx+ex/y(1xy)dy=0

Open in App
Solution

(1+ex/y)dx+ex/y(1xy)dy=0
(1+ex/y)dx=ex/y(1xy)dy
dxdy=ex/y(1x/y)1+ex/y
dxdy=f(x,y)
f(x,y)=ex/y(1x/y)1+ex/y
f(λx,λy)=eλx/λy(1λx/λy)1+eλx/λy
=ex/y(1x/y)1+ex/y
=λof(x,y)
Let x=vy
Put
dxdy=vdydy+ydvdy
dxdy=v+ydvdy
As dxdy=ex/y(1x/y)1+ex/y
V+ydvdy=evy/y(1vy/y)1+evy/y
ydvdy=ev(1v)1+evV
ydvdy=ev+vevvvev1+ev
1+evv+evdv=dyy
Integrate Both sides
1+evv+evdv=logy+logC
V+ev=t(1+ev)dv=dt
dtt=logy+logC
now substitute t
logt=logy+logc
log(v+ev)=logy+logC
log(v+ev)+logy=logC
logy(v+ev)=logC
Put v=xy
logy(xy)+exy
logyxy+exy=logc
y(xy+ex/y)=C
x+yex/y=C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon