1+sin2θ=3sinθcosθ
1+sin2θ−3sinθcosθ=0
sin2θ+cos2θ+sin2θ−3sinθcosθ=0
since, sin2θ+cos2θ=1
2sin2θ−2sinθcosθ+cos2θ−sinθcosθ=0
2sinθ(sinθ−cosθ)−cosθ(sinθ−cosθ)=0
(sinθ−cosθ)(2sinθ−cosθ)=0therefore,
(sinθ−cosθ)=0 .......(i)
or
(2sinθ−cosθ)=0 .......(ii)
from eqn. (i)
(sinθ−cosθ)=0
tanθ=1
θ=π4
from eqn. (ii)
(2sinθ−cosθ)=0
θ=sin−112