wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: 1+sin2θ=3sinθcosθ

Open in App
Solution

1+sin2θ=3sinθcosθ

1+sin2θ3sinθcosθ=0

sin2θ+cos2θ+sin2θ3sinθcosθ=0

since, sin2θ+cos2θ=1

2sin2θ2sinθcosθ+cos2θsinθcosθ=0

2sinθ(sinθcosθ)cosθ(sinθcosθ)=0

(sinθcosθ)(2sinθcosθ)=0
therefore,

(sinθcosθ)=0 .......(i)
or
(2sinθcosθ)=0 .......(ii)

from eqn. (i)
(sinθcosθ)=0

tanθ=1
θ=π4

from eqn. (ii)
(2sinθcosθ)=0

tanθ=12
θ=sin112





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon