Solution:
2x4+x3−11x+x+2=0
or, 2x4−4x3+5x3−10x2−x2+2x−x+2=0
or, 2x3(x−2)+5x2(x−2)−x(x−2)−1(x−2)=0
or, (x−2)(2x3+5x2−x−1)=0
or, (x−2)(2x3−x2+6x2−3x+2x−1)=0
or, (x−2){x2(2x−1)+3x(2x−1+1(2x−1))}=0
or, (x−2)(2x−1)(x2+3x+1)=0
Now, x2+3x+1=0
or, x=−3±√9−42=−3±√52
or, (x−2)(2x−1)(x−−3+√52)(x−−3−√52)=0
Roots of given equation are 2,12,−3+√52 and −3−√52.