We have,
2yexydx+⎛⎜⎝y−2xexy⎞⎟⎠dy=0
dxdy=−⎛⎜⎝y−2xexy⎞⎟⎠2yexy ……. (1)
Put x=vy
On differentiating w.r.t y, we get
dxdy=v+ydvdy
From equation (1), we get
v+ydvdy=−(y−2vyev)2yev
ydvdy=−(y−2vyev)2yev−v
ydvdy=−(1−2vev)2ev−v
ydvdy=−1+2vev−2evv2ev
ydvdy=−12ev
2evdv=−dyy
On integration both sides, we get
∫2evdv=∫−dyy
2ev=−lny+C
2exy+lny=C
Hence, this is the answer.