Taking x+y=u and x−y=v the given system of equations becomesau+bu−(a2−ab+b2)=0au−bv−(a2+ab+b2)=0
By cross-multiplication, we have
⇒ub×−(a2+ab+b2)−(−b)×−(a2−ab+b2)=−va×−(a2+ab+b2)+a(a2−ab+b2)=1a×−b−a×b
⇒u−b(a2+ab+b2)−−b(a2−ab+b2)=−v−a(a2+ab+b2)+a(a2−ab+b2)=1−ab−ab
⇒u−b(a2+ab+b2+a2−ab+b2)=−v−a(a2+ab+b2−a2+ab−b2)=1−2ab
⇒u−2b(a2+b2)=−v−a(2ab)=1−2ab
⇒u=−2b(a2+b2)−2ab,v=2a2b−2ab⇒u=a2+b2a,v=−a
Now, u=a2+b2a⇒x+y=a2+b2a .(i)
and, v=−a⇒x−y=−a ..(ii)
Adding equations (i) and (ii), we get
2x=a2+b2a−a⇒2x=a2+b2−a2a⇒2x=b2a⇒x=b22a
Substitutiing equation (ii) from equation (i), we get
2y=a2+b2a+a⇒2y=a2+b2+a2a⇒y=2a2+b22a
Hence, the solution of the given system of equations is x=b22a,y=2a2+b22a.