The given equation is:
a2b2x2 − (4b4 − 3a4)x − 12a2b2 = 0
Comparing it with Ax2 + Bx + C = 0, we get:
A = a2b2 , B = − (4b4 − 3a4) and C = − 12a2b2
∴ D = (B2 − 4AC)
= (3a4 − 4b4 )2 − 4(a2b2)( − 12a2b2 )
= 9a8 + 16b8 − 24a4b4 + 48a4b4
= (3a4)2 + (4b4)2 + 2 × 3a4 × 4b4
= (3a4 + 4b4)2 ≥ 0
Hence, the given equation has real roots. These are
Hence, are the roots of the given equation.