The given equation is 4x+1+41−x=10
4x+1+41−x=10
⇒4x.4+4.4−x=10⇒4.4x+44x=10⇒4.(4x)2+4=10.4x⇒4.(4x)2−10.4x+4=0
Put 4x=z∴4z2−10z+4=0⇒4z2−8z−2z+4=0⇒4z(z−2)−2(z−2)=0⇒(4z−2)(z−2)=0⇒4z−2=0orz−2=0⇒z=12orz=2∴4x=12or4x=2⇒22x=2−1or22x=21⇒2x=−1or2x=1⇒x=−12 or x=12
Thus, the values of x are −12 or 12