The correct option is C (-a+1)/2 and (a+4)/3
6x2+(a−11)x−(a2+3a−4)=0
⇒6x2+((3a−3)−(2a+8))x−(a+4)(a−1)=0
⇒6x2+(3a−3)x−(2a+8)x−(a+4)(a−1)=0
⇒3x[2x+(a−1)]−(a+4)[2x+(a−1)]=0
⇒[2x+(a−1)][3x−(a+4)]=0
⇒2x+(a−1)=0 or 3x−(a+4)=0
⇒2x=−a+1 or 3x=a+4
⇒x=1−a2 or x=a+43
So, option c is correct.