cos(x+y)dy=dx(dydx)=(1cos(x+y))letx+y=tthen1+(dydx)=(dtdx)or(dydx)=(dtdx)−1∴(dtdx)−1=(1cost)(dtdx)=(1cost)+1(dtdx)=(1+costcost)∫(costdt1+cost)=∫dx∫(cost(1−cost)12−cos2t)dt=x+c∫(cost−cos2tsin2t)dt=x+c∫cottcosectdt−∫cot2tdt=x+c−cosect−∫(cosec2t−1)dt=x+c−cosect+cott+t=x+c−cosec(x+y)+cot(x+y)+x+y=x+c−cosec(x+y)+cot(x+y)+y=c