cot2θ+3 cosec θ+3=0
cos2θsin2θ+3sinθ+3=0
cos2θ+3sinθ+3sin2θsin2θ=0
cos2θ+3sin2θ+3sinθ=0
1+2sin2θ+3sinθ=0
put sinθ=x in above equation we get
2x2+3x+1=0
solution of above polynomial is given by:
x=−3±√32−4×2×122
x=−3±√9−84
Hence,
x=−1 or x=−12
Hence,
sinθ=−1 or sinθ=−12
→θ=(4n+3)π2 or θ=(12n+7)π6 =(12n+11)π6
where n=0,1,2,3,.....