Given: expression
1x+1+2x+2=4x+4To solve the given expression
Sol: 1x+1+2x+2=4x+4⟹(x+2)+2(x+1)(x+1)(x+2)=4x+4⟹3x+4x2+2x+x+2=4x+4⟹(3x+4)(x+4)=4(x2+3x+2)⟹3x2+12x+4x+16=4x2+12x+8⟹4x2−3x2+12x−16x+8−16=0⟹x2−4x−8=0
This is form ax2+bx+c=0, hence a=1,b=−4,c=−8
Therefore, x=−b±√b2−4ac2a
i.e., x=−(−4)±√(−4)2−4(1)(−8)2(1)⟹x=4±√16+322⟹x=4±6.932⟹x1=4+6.932,x2=4−6.932⟹x1=5.5,x2=−1.5