1(x−1)(x+2)+1(x−2)(x−3)=23(x−2)(x−3)+(x+2)(x−1)(x−1)(x−2)(x+2)(x−3)=23x2−3x−2x+6+x2−2−x−2(x2−x−4)(x2−5x+6)=236x2−18x+6=2(x2−x−4)(x2−5x+6)6x2−18x+6=2(x4−5x3+6x2−x3+5x2−6x−4x2+20x−24)6x2−18x+6=2(x4−6x3+7x2+14x−24)6x2−18x+6=2x4−12x3+14x2+28x−482x4−12x3+14x2+28x−48−6x2+18x−6=02x4−12x3+8x2+38x−54=0