wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dydx+2y=sinx

Open in App
Solution

We have,

dydx+2y=sinx ……. (1)

Since, P=2,Q=sinx

Integrating factor,

I.F=ePdx

I.F=e2dx

I.F=e2x

Therefore, the general solution

y×I.F=Q×I.Fdx

y×e2x=sinx×e2xdx

We know that

eaxsinbxdx=eaxa2+b2(asinbxbcosbx)+C

Thus,

y×e2x=e2x22+12(2sinxcosx)+C

y×e2x=e2x5(2sinxcosx)+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon