dydx=sin−1x
dy=sin−1xdx
∫dy=∫sin−1xdx
y=sin−1x∫1.dx−∫[1√1−x2∫1.dx]
y=xsin−1x∫x√1−x2.dx
Let t=1−x2
−2x.dx=dt
xdx=−dt2
Now
y=xsin−1x−∫−dt2√t
y=xsin−1x+∫dt2√t
y=xsin−1x+12∫t−1/2.dt
y=xsin−1x+12t−1/2+1−12+1+c
y=xsin−1x+12t1/21/2+c
y=xsin−1x+√t+c
y=xsin−1x+√1−x2+c