We have,
dydx=x(2logex+1)
dy=[x(2logex+1)]dx
On taking integral both sides, we get
∫dy=∫[x(2logex+1)]dx
∫dy=2∫xlogexdx+∫xdx
y=2[logex(x22)−∫1x×(x22)dx]+x22+C
y=2[logex(x22)−12∫xdx]+x22+C
y=2[(x22)logex−12x22]+x22+C
y=[x2logex−x22]+x22+C
y=x2logex+C ……. (1)
Since, x=2,y=0
Therefore,
0=4loge2+C
C=−4loge2
Therefore,
y=x2logex−4loge2
Hence, this is the answer.