wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve :
dydx=x(2logx+1), given y=0 where x=2.

Open in App
Solution

We have,

dydx=x(2logex+1)

dy=[x(2logex+1)]dx

On taking integral both sides, we get

dy=[x(2logex+1)]dx

dy=2xlogexdx+xdx

y=2[logex(x22)1x×(x22)dx]+x22+C

y=2[logex(x22)12xdx]+x22+C

y=2[(x22)logex12x22]+x22+C

y=[x2logexx22]+x22+C

y=x2logex+C ……. (1)

Since, x=2,y=0

Therefore,

0=4loge2+C

C=4loge2

Therefore,

y=x2logex4loge2

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon