We have,
√5+√32√5−3√3=a−b√15
On rationalize and we get,
√5+√32√5−3√3×2√5+3√32√5+3√3=a−b√15
⇒10+3√15+2√15+9(2√5)2−(3√3)2=a−b√15
⇒19+5√1520−27=a−b√15
⇒19+5√15−7=a−b√15
⇒19−7+5√15−7=a−b√15
Comparing that, and we get,
a=−197 and
−b=−57
⇒b=57
Hence, this is the answer.