wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve π/40ln(1+tanx)dx

Open in App
Solution

I=π/40ln(1+tanx)dx
I=a0f(x)dx=a0f(ax)dx
I=π/40ln(1+tan(π4x))dx
I=π/40ln⎜ ⎜1+tanπ4tanx1+tanπ4.tanx⎟ ⎟dx
I=π/40ln(1+1tanx1+tanx)dx
I=π/40ln(21+tanx)dx
I=π/40ln(2)dxπ/40ln(1+tan(x))dx
I=π/40ln(2)dxI
2I=π/40ln(2)dx
I=ln(2)2(x)π/40
I=π8ln(2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon