I=∫π/40ln(1+tanx)dx
I=∫a0f(x)dx=∫a0f(a−x)dx
I=∫π/40ln(1+tan(π4−x))dx
I=∫π/40ln⎛⎜
⎜⎝1+tanπ4−tanx1+tanπ4.tanx⎞⎟
⎟⎠dx
I=∫π/40ln(1+1−tanx1+tanx)dx
I=∫π/40ln(21+tanx)dx
I=∫π/40ln(2)dx−∫π/40ln(1+tan(x))dx
I=∫π/40ln(2)dx−I
2I=∫π/40ln(2)dx
I=ln(2)2(x)π/40
I=π8ln(2)