∫2+sin2x2−sin2xdx
=−∫−2−sin2x2−sin2xdx
=−∫(2−sin2x)−42−sin2xdx
=−∫dx+4∫dx2−sin2x
=−x+4∫dx2−2tanx1+tan2x
=−x+42∫sec2xdx1+tan2x−tanx
Puttingtanx=tsec2xdx=dt
=−x+2∫dtt2−t+1
=−x+2∫dtt2−t+14−14+1
=−x+2∫dt(t−12)2+(√32)2
=−x+2×2√3tan−1⎛⎜
⎜
⎜
⎜⎝t−12√32⎞⎟
⎟
⎟
⎟⎠+c
=−x+4√3tan−1(2t−1√3)+c
=−x+4√33tan−1(2tanx−1√3)+c