I=∫cosxsin7xdx (1)
Let sinx=t
Differentiate above equation with respect to x
d(sinx)dx=dtdx
cosx=dtdx
cosxdx=dt
Substitute cosxdx=dt and sinx=t in equation (1).
I=∫dtt7
=∫t−7dt[∫xndx=xn+1n+1]
=−t−66+C (2)
Substitute t=sinx in equation (2).
I=−sin−6x6+C
Thus, ∫cosxsin7xdx is −sin−6x6+C where C is integration constant.