∫1sin6x+cos6xdx
∫1cos6xsin6x+cos6xcos6x
∫sec6x1+tan6xdx
∫sec4x×sec2x1+tan6xdx
∫(1+tan2x)2×sec2x1+tan6xdx
substitute tanx=t→sec2xdx=dt
∫(1+t2)21+t6dt
∫(1+t2)2(1+t2)(t4−t2+1)dt
∫1+t2t4−t2+1dt
∫1+1t2t2−1+1t2dt
∫1+1t2(t−1t)2+1dt
substitute t−1t=u→(1+1t2)dt=du
duu2+1=tan−1u=tan−1(t−1t)=tan−1(t2−1t)
=tan−1tan2x−1tanx+C