wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve dxsinx+secx

Open in App
Solution

Consider the following integral.

I=1sinx+secxdx

=2cosx2+2sinxcosxdx

=cosxsinx+sinx+cosx1+sin2x+cos2x+2sinxcosxdx

=sinx+cosx1+(sinx+cos)2dx+cosxsinx1+(sinx+cos)2dx

I=I1+I2

Integrate I1and I2 we get,

I1=sinx+cosx1+(sinx+cos)2dx$

Let, t=sinx+cosx

And differentiate both side w.r.t x

dt=(cosxsinx)dx

=cosxsinx1+(t)21(cosxsinx)dt

=11+(t)2dt

=tan1t+C

+tan1(sinx+cosx)+C

I2=sinx+cosx2+sin2xdx

=sinx+cosx3(1sin2x)dx

=sinx+cosx3(sin2x+cos22sinxcosx)dx

=sinx+cosx3(sinxcosx)dx

u=sinxcosx

dx=dusinx+cosx

I2=sinx+cosx3u2du(sinx+cosx)

=1(3)2u2du

=13ln(3+u3u)

=13ln(3+sinxcosx3(sinxcosx))

I=1sinx+secxdx=13ln(3+sinxcosx3(sinxcosx))+tan1(sinx+cosx)+C

Hence, this is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon