I=∫1dxsinx+sin2x
∴I=∫1dxsinx+2sinxcosx
∴I=∫1dxsinx(1+2cosx)
∴I=∫sinxdxsin2x(1+2cosx)
∴I=∫−sindx(cosx+1)(cosx−1)(2cosx+1)
Let u= cos x du=-sin x dx
∴I=∫1du(u+1)(u−1)(2u+1)
partial fraction problem
A(u-1)(2u+1)+B(u+1)(2u+1)+C(u-1)(u+1)=a
∴A=12B=16C=−43
∴I=12∫1u+1du+16∫1u−1du
−23∫22u+1du
∴I=12ln|u+1)+16ln|4−1)−23ln|2u+1)+c