I=∫ex−2(1+e−x)2dx
=−12∫ex.e2x(ex+1)2dx
put ex=t
exdx=dt
=−12∫t2(t+1)2dt
=−12∫[(t+1)2−2t−1](t+1)2dt
I=[−12∫dt]+[12∫2t+1(t+1)2dt]
A=∫−12dt=−t2=−ex2
A=−ex2
(B)12∫(2t+1)(t+1)2dt
=12∫2t+2(t+1)2dt−12∫1(t+1)2dt
⇒12∫ddx(t+1)2(t+1)2dt−12∫1(t+1)2dt
⇒12log|t+1|2−12∫1(t+1)2dt
⇒log|P|−12∫dt(t+1)2
(t+1)=p
dt=dp
⇒log|p|−12∫dpp2
⇒log|p|−12(−1p)+c
⇒log|p|+12p+c
⇒B=log|t+1|+12(t+1)+c
I=A+B=−e−x2+|log|ex+1|+12(ex+1)+c