we have.
(x+1) (x+logx)2x
on integrate and we get.
∫(x+1) (x+logx)2x dx
let x + logx = t1+1x=dtdx
dx=(xx+1)dt
now, ∫(x+1x)t2(xx+1) dt
=∫t2 dt
=t2+12+1+ C
= t2+12+1+ C
=t33+ C
=13(x+logx)3+C
Hence,This is the answer