I=∫x2(4+x)32dx
(4+x)=t⇒x=(t−4)
dx=dt
=I=∫(t−4)2dtt32
=∫t2−812+16t32dt
=∫[t12−8t12+t−32]dt
⇒(t12+112+1)−8(t−12+1−12+1)+t−32+1−32+1+c
⇒2t323−1bt12−tt−12−12+c
⇒2t323−16t12−2t12+c
⇒2[t323−8t12−t−12]+c
⇒2[(4+x)323−8(4+x)12−1(4+x)12]+c
⇒2[(4+x)2−(8.3)(4+x)−13(4+x)12]+c
⇒23[x2+8x+16−96−24x−1(x+4)12]+c
I⇒23[x2−16x−81(x+4)12]