wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
x2(xsinx+cosx)2dx.

Open in App
Solution

x2dx(xsinx+cosx)2
xsinx dxxsinx+cosxxcosx(sinxxcosx) dx(xsinx+cosx)2
Using byparts in the second integral,we get-
u=sinxxcosx , v=xcosx(xsinx+cosx)2
du=xsinx , vdv=1xsinx+cosx
Second Integral becomes
sinxxcosxxsinx+cosx+xsinx dxxsinx+cosx
Hence the overall equation is,
xsinx dxxsinx+cosx+sinxxcosxxsinx+cosxxsinx dxxsinx+cosx
sinxxcosxxsinx+cosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon