∫x2dx(xsinx+cosx)2∫xsinx dxxsinx+cosx−∫xcosx(sinx−xcosx) dx(xsinx+cosx)2
Using byparts in the second integral,we get-
u=sinx−xcosx , v=xcosx(xsinx+cosx)2
du=xsinx , ∫vdv=−1xsinx+cosx
Second Integral becomes
−sinx−xcosxxsinx+cosx+∫xsinx dxxsinx+cosx
Hence the overall equation is,
∫xsinx dxxsinx+cosx+sinx−xcosxxsinx+cosx−∫xsinx dxxsinx+cosx
⟹sinx−xcosxxsinx+cosx