We have,
\[\begin{align}
I=∫x4+1x6+1dx
I=∫(x4+1x6+1×x2+1x2+1)dx
I=∫(x6+x2+x4+1(x6+1)(x2+1))dx
I=∫(x6+1(x6+1)(x2+1)×x2+x4(x6+1)(x2+1))dx
I=∫1x2+1dx+13∫3x2x6+1dx
I=∫1x2+1dx+13∫3x2(x3)2+1dx
Let
x3=t
3x2dx=dt
Then,
I=∫1x2+1dx+13∫dtt2+1
On integrating and we get,
I=tan−1x+13tan−1t+C
Put t=x3 and we get,
I=tan−1x+13tan−1x3+C
Hence, this is the answer.