Put x=cos2t,
=> dx=−2sin2tdt
=> ∫−2tan−1√1−cos2t1+cos2tsin2tdt
=> ∫−2tan−1√2sin2t2cos2tsin2tdt
=> ∫−2tan−1(tant).sin2tdt
=> −2∫t.sin2tdt
Solving this using By Parts, we get
=> −2[t2sin2t2+∫cos2t2]dt
=> −[t2sin2t+sin2t2]+C
Put t=cos−1x2,
=> −[cos−1x22.sin(cos−1x)+sin(cos−1x)2]+C